Continuous solution copolymerization of ethylene and octene-1 with constrained geometry metallocene catalyst

Author(s):  
Wen-Jun Wang ◽  
Edward Kolodka ◽  
Shiping Zhu ◽  
Archie E. Hamielec
Author(s):  
Wen-jun Wang ◽  
Dajing Yan ◽  
Paul A. Charpentier ◽  
Shiping Zhu ◽  
Archie E. Hamielec ◽  
...  

Author(s):  
Philip Isett

This chapter deals with the gluing of solutions and the relevant theorem (Theorem 12.1), which states the condition for a Hölder continuous solution to exist. By taking a Galilean transformation if necessary, the solution can be assumed to have zero total momentum. The cut off velocity and pressure form a smooth solution to the Euler-Reynolds equations with compact support when coupled to a smooth stress tensor. The proof of Theorem (12.1) proceeds by iterating Lemma (10.1) just as in the proof of Theorem (10.1). Applying another Galilean transformation to return to the original frame of reference, the theorem is obtained.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2091
Author(s):  
Daniela Mileva ◽  
Jingbo Wang ◽  
René Androsch ◽  
Katalee Jariyavidyanont ◽  
Markus Gahleitner ◽  
...  

Propylene-based random copolymers with either ethylene or 1-hexene as comonomer, produced using a metallocene catalyst, were studied regarding their crystallization behaviors, with a focus on rapid cooling. To get an impression of processing effects, fast scanning chip calorimetry (FSC) was used in addition to the characterization of the mechanical performance. When comparing the comonomer type and the relation to commercial grades based on Ziegler–Natta-type catalysts, both an interaction with the catalyst-related regio-defects and a significant difference between ethylene and 1-hexene was observed. A soluble-type nucleating agent was found to modify the behavior, but to an increasingly lesser degree at high cooling rates.


Sign in / Sign up

Export Citation Format

Share Document